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SUMMARY 

In this paper a method is presented that can be used for both the Lagrangian and the Eulerian solution of the 
Navier-Stokes equations in a domain of arbitrary shape, bounded by boundaries which move in any 
prescribed time-varying fashion. The method uses the integral form of the governing equations for an 
arbitrary moving control volume, with pressure and Cartesian velocity components as dependent variables. 
Care is taken to also satisfy the space conservation law, which ensures a fully conservative computational 
procedure. Fully implicit temporal differencing makes the method stable for any time step. 

A detailed description is provided for the discretization in two dimensions, with a collocated arrangement 
of variables. Central differences are used to evaluate both the convection and diffusion fluxes. The well 
known SIMPLE algorithm is employed for pressure-velocity coupling. The resulting algebraic equation 
systems are solved iteratively in a sequential manner. Results are presented for a flow in a channel with a 
moving indentation; they show favourable agreement with experimental observations. 
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INTRODUCTION 

There are many kinds of fluid flow which are best studied in a non-Eulerian co-ordinate system, 
as is the case with flows in domains with moving boundaries. There are also cases where the use of 
such a co-ordinate system may be desirable for computational convenience, e.g. in calculations on 
adaptive numerical grids. 

Flows with moving boundaries can be encountered in many practical situations; among those 
in which considerable research interest has been shown in recent years are in-cylinder flows in 
internal combustion engines, free surface flows, flows in blood vessels, etc. The main feature of 
these flows is their unsteadiness, both with respect to flow patterns and to  the shape of the 
boundary and the conditions which apply there. Whilst many numerical solutions of unsteady 
flows have been presented in the literature, problems with moving boundaries have been 
considered by relatively few authors. Viecelly' used a modified version of the MAC procedure of 

0271-2091/90/070771-20$10.00 
0 1990 by John Wiley & Sons, Ltd. 

Received November 1988 
Revised August 1989 



772 I. D E M I R D ~ I C  AND M. PERIC 

Harlow and Welch' to solve the same free surface and 'flexible bag' problems; Godunov and 
Prokopov3 developed a two-dimensional finite difference moving mesh method for compressible 
flow calculations; Hirt et aL4 presented a general method for the solution of both compressible 
and incompressible flow problems; Gosman and Watkins,' Gosman and Johns6 and Gosman7 
reported calculations of in-cylinder flows; Thomas and Lombard' presented solutions of steady 
and unsteady supersonic flow equations; Ling and Atabek' used an approximate numerical 
method for the calculation of flow in arteries; Krause'O presented some calculations of incom- 
pressible viscous flow in vessels with moving boundaries; Ralph and Pedley" modified the 
streamfunction-vorticity equations and a finite difference solution scheme to obtain a solution for 
laminar flow in a channel with moving indentation; etc. Most of the solution methods presented 
in the cited references are applicable only to a certain class of problems for which they have been 
specially designed (rectangular grid, only one set of grid lines moves, etc.). When only one of the 
solution domain boundaries moves in one direction, simple transformation of the conservation 
equations allows for easy discretization (e.g. in Gosman7 and Durst et a/.'*). However, in a 
general case when grid movement in all directions can take place simultaneously, careful 
discretization is necessary in order to satisfy the space conservation law. Demirdiii: and Perii:13 
have shown that failure to do so introduces errors in the form of artificial mass sources. 

Adaptation of grid lines to the flow direction enables achievement of higher accuracy at the 
same level of grid fineness. It is especially desirable in supersonic flow problems, where high 
gradients in the shock region need very fine grids to be adequately resolved. Some such 
applications are presented in T h ~ m p s o n ; ' ~  also by Deiwert and Rothmund," Hung and 
Buning16 and others. However, most of the grid adaptation methods were used in conjunction 
with steady flow calculations, in which case it is not necessary to have a moving grid. In an 
iterative solution procedure the grid adaptation can be performed between two iterations, and the 
solution procedure can continue without taking into account the old grid position. When the flow 
is unsteady, the grid adaptation has to be performed between two time steps, and the movement 
of grid lines has to be properly accounted for in the discretization scheme. 

When the grid moves to adapt to the new flow field, one has to devise a strategy or criteria 
according to which this movement should take place. This is a very complex issue, and further 
discussion of it is beyond the scope of this study (some approaches are discussed in T h ~ m p s o n ' ~ ) .  
We focus our attention on the implementation of the moving grid concept into a finite volume 
discretization scheme for general boundary-fitted grids. The laws which govern the grid move- 
ment are, for the sake of this task, irrelevant; here we take it simply that the grid is required to fit 
the boundary and that the position of the boundary is known at each time step. 

The solution method to be presented in this paper is an extension of the method developed for 
steady flows by Pe~-ii:.'~ The novelty is the implementation of the moving grid concept in a way 
which ensures the satisfaction of the space conservation law (SCL), whose importance in 
numerical calculations with moving grids has been demonstrated in an earlier p~bl icat ion. '~  A 
convenient collocated variable arrangement is employed, with second-order central differencing 
in space and first-order fully implicit differencing in time. For the sake of brevity the method is 
described for two-dimensional problems; its extension to three dimensions is, however, straight- 
forward. 

The next section describes briefly the governing equations for the unsteady flow in a moving 
co-ordinate frame. The following section describes the discretization procedure adopted by the 
authors. Application of the solution method developed here to a two-dimensional problem of 
laminar flow in a channel with moving indentation is then presented. Finally, conclusions are 
drawn and possibilities of further development of the solution scheme are presented. 
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GOVERNING EQUATIONS 

In order to describe the fluid flow and related transport phenomena in moving (non-Eulerian) co- 
ordinates, we use the integral form of the conservation laws for space, mass, momentum and 
scalar quantities (thermal energy, concentration, etc.), which for an arbitrary spatial region (of the 
Euclidean space) of volume V bounded by a closed surface S can be written'* 

where p represents the fluid density, v is the fluid velocity, vb is the velocity of the boundary of a 
control volume, 4 stands for any scalar quantity (enthalpy, concentration, etc.), s, and s+ are the 
volumetric sources of momentum and scalar quantity respectively, and the stress tensor and flux 
vector are, for a Newtonian fluid, defined respectively as 

T = - ( p  + 4 p  divv)l+ 2pD, 

q = I-, grad 4. 
(2)  

(3) 
Here p is the pressure, p is the dynamic viscosity of the fluid, I-, is the diffusion coefficient for the 
transported quantity 4, Z is the unit tensor and D stands for the rate-of-strain (deformation) 
tensor, defined as 

D = $[grad v + (grad v)']. (4) 

From the momentum conservation equation (lc), equations for the Cartesian velocity compon- 
ents ui are obtained by taking a dot product of it and the corresponding base vector ii; thus 

where (see equations (2)  and (4)) 

ti = T. ii = - ( p  + 4 p  div v)ii + p grad ui + p( grad v)' - ii. (6) 

A particular feature of the conservation equations related to a control volume with a moving 
boundary is the fact that the convective fluxes through the control surface are expressed via the 
relative velocity v - vb,  where the surface velocity v,, has to satisfy the space conservation law.' 

DISCRETIZATION PROCEDURE 

The conservation equations (la)-( Id) are discretized by employing a finite volume approach and 
a fully implicit temporal differentiation. The time step 6 t  is first chosen, and the flow domain is 
subdivided into a finite number of contiguous control volumes (CV) of volume V bounded by cell 
faces S j ;  see Figure 1.  The computational points (nodes) are placed in the centre of each CV, as 
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I 

Figure 1. Two-dimensional control volume and labelling scheme 

shown in Figure 1; boundary nodes, needed for the specification of boundary conditions, reside in 
the centre of boundary CV faces. All the dependent variables share the same storage location 
(collocated arrangement). 

It is noted first that the SCL, equation (la), can be solved explicitly at each CV face for the 
boundary velocity vb,  as explained in detail by DemirdiiC and Peri15.'~ Alternatively, one can use 
this equation to calculate the volume fluxes through the CV faces which result from its motion. By 
assuming that the positions of a control volume at  the two successive time steps are known, the 
SCL equation 

can be discretized in the following way: 

In the above expression V" and V" are the cell volumes at the new and old time levels respectively, 
and SVj represents the volume swept by the j t h  CV face during time St ,  as indicated by the shaded 
area in Figure 2. The latter can easily be calculated when the co-ordinates of the CV vertices are 
known at both time levels, as assumed here. 

All the other conservation equations have the same general form, represented by the scalar 
equation (Id). By taking into account the shape of the control volumes, the representative 
conservation equation to be discretized can, for a given CV, be written as 

[ p ( v  - vb)d#  - I-, grad 41 * dS = 
d 

(9) 

rate of change 'convection diffusion source 
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I 

X 

Figure 2. On the discretization of the SCL equation (7) 

with four distinctive parts: rate of change, convection, diffusion and source (the mass conservation 
equation does not have a diffusion term). The rate-of-change and source terms are integrated over 
the cell volume, whereas the convection and diffusion terms form the sum of fluxes through the 
CV faces. The evaluation of each term will now be described. 

Rate of change 

It is taken that the value of the dependent variable 4 in the middle of the control volume 
(computational node, point P in Figure 1) represents an average over the CV as a whole. Thus the 
rate-of-change term can be discretized as follows: 

Here superscripts ‘n’ and ‘0’ denote the new and old time levels respectively. Since a fully implicit 
time discretization will be used, the superscript ‘n’ will be omitted hereafter. 

Convection fluxes 

The convection terms in the continuity equation (lb) represent the mass fluxes through the CV 
faces. Here only the ‘e’ face will be considered (see Figure l), the other faces being treated in an 
analogous way. By assuming that the CV vertices are connected by straight lines, the surface 
vector S, can be defined as 

S e  = (Yn - Ys)e i  - (xn - Xsle j, (1 1) 

which may also be interpreted as being an average surface vector for an (arbitrary) curved surface 
connecting the two CV vertices. The mass flux can then be evaluated, taking into account 
expression (8), as 

P(V - v,)*dS z P,(v*S - v ~ * S ) ,  = P ,  [u(Y, - y,) - U ( X ,  - x , ) ]  - 

The velocity components at the CV faces, needed for the evaluation of the mass fluxes, are 
obtained from a special interpolation practice which assures a stable solution procedure with 
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collocated grids, as described in the text section. The volume change is calculated from the co- 
ordinates of the CV vertices at the two time levels, as described before. 

The convection flux of variable 4 through the CV face ‘e’ may now be evaluated as follows: 

P$(V - v,)’dS Pe4e(V’S - v b ’ s ) ,  % F e 4 e ,  (13) ce = 6. 
where 4e stands for the cell face mean value of the variable 4. Here a second-order central 
differencing scheme (CDS), which implies linear interpolation, is used to express it via the 
neighbouring nodal values. The CDS is implemented using the ‘deferred correction’ approach, 
first suggested by Khosla and Rubin.” The convection flux is split into an ‘implicit’ part, 
expressed through first-order upwind differencing (UDS), and an explicit part, which equals the 
difference between the CDS and UDS approximations: 

(F4)e = (F6)YDS + Y C ( F ~ ) ~ ~ ~  - (F4)YDSI. (14) 

Multiplication of the explicit part by a factor y (0 I y I 1) allows the introduction of numerical 
diffusion ( y  = 0 means pure UDS approximation), as may be necessary to damp wiggles resulting 
in some cases from the use of CDS on coarse grids. The deferred correction approach enhances 
the diagonal dominance of the coefficient matrix, which adds to the stability of the solution 
algorithm. 

Diffusion fluxes 

The diffusion flux of 4 through the ‘e’ cell face can, after applying some vector algebra in order 
to express the gradient operator in terms of derivatives along the co-ordinate lines, be evaluated 
as follows: 

~ e = - 1 .  ~4 grad4.dS % - [ 21 c ( ~ E  - 6 P ) ( s e * s e )  + ( 4 n  _ _ _ _ . _ ~  - 4 s ) ( s e * s n ) 1 e  (15) 
e 

In the above expzssion the volume Ve equals the scalar product of the surface vector Se and the 
distance vector PE; (Sn)e is the surface vector defining the segment of surface q = const bounded 
by nodes P and E (see Figure l), directed as Sn, i.e. 

(%)e = - ( Y E  - Y P ) ~  + (xE - xP) i  (16) 
The underlined part of the diffusion flux in equation (15) is usually called the ‘cross-diffusion’ 
contribution. It vanishes when the grid is orthogonal, and is small compared to the other part if 
the grid non-orthogonality is not severe; for this reason it is treated explicitly. This simplifies the 
coefficient matrix, since only the contributions of the four immediate neighbours of node P are 
then treated implicitly. In the case of the momentum component equations, the extra term which 
does not feature in the model equation (9) is also treated explicitly, as an extra source, as will be 
explained shortly. This renders the coefficients of the discretized equations equal for all the 
velocity components. 

Sources 

The source term is to be integrated over the cell volume, as indicated in equation (9). By 
assuming-implying indirectly the mean value theorem-that the specific source at  the CV centre 
represents the mean value over the whole control volume, one can write 
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Apart from the ‘real’ source se, explicitly treated parts of the convection and diffusion fluxes may 
also be added to se. The momentum component equations are a special case since they contain an 
extra term not featured in equation (9). This term is also treated explicitly ; its discretization is 
analogous to that of the ‘ordinary’ diffusion flux, i.e. 

Boundary conditions 

The expressions for the evaluation of the convective and diffusive fluxes described above are 
valid for all interior CV faces. On the faces coinciding with the boundary of the solution domain, 
appropriate boundary conditions have to be applied in order to make the resulting system of 
algebraic equations solvable. Basically two kinds of boundary conditions may apply: (i) the 
boundary fluxes are known, in which case they are added to the source terms of adjacent control 
volumes and the above flux evaluation formulae are suppressed for the boundary cell faces, or 
(ii) the boundary values of the dependent variable 4 are known, in which case the above formulae 
are applied for the evaluation of the fluxes. In the case where the boundary fluxes are prescribed 
(e.g. zero fluxes through the symmetry plane), the values of the variables at the boundary nodes 
have to be evaluated by means of a suitable extrapolation procedure from the interior nodal 
values, since they are needed for the evaluation of the cross-diffusion fluxes through the faces 
adjacent to the boundary. Details on the treatment of various kinds of boundaries may be found 
in PeriC.17 

System of algebraic equations 

value of the dependent variable at the CV centre with the neighbouring values: 
Summing the fluxes through all faces of one CV results in an algebraic equation which links the 

The coefficients A,, contain contributions from the convection and diffusion fluxes as defined by 
equation (1 3) and (1 5). The central coefficient A, can, by employing the discretized continuity 
equation (23), be expressed in the following way: 

For the solution domain as a whole there results a system of N equations with N unknowns, 
where N is the number of control volumes. The coefficient matrix of such a system has non-zero 
coefficients only on five diagonals. Several efficient iterative solvers can be employed to solve the 
system of equations; in this study the strongly implicit procedure (SIP) of Stone,** based on an 
incomplete LU factorization of the coefficient matrix, is used. If the source term is a function of 4, 
a suitable linearization may provide another positive contribution to the central coefficient. This 
enhances the diagonal dominance of the coefficient matrix, which makes the iterative solution 
procedure more stable. Another way of enhancing the stability of the solution method, especially 
when the equations are non-linear and coupled, is underrelaxation. More details on the above 
techniques can be found in many publications, e.g. in Patankar.” 
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PRESSURE-VELOCITY COUPLING AND SOLUTION ALGORITHM 

Pressure correction equation 

The coupling of pressure and velocities is achieved via the well known SIMPLE algorithm.” 
The continuity equation is thus transformed into a pressure correction equation which has the 
same general form as the other discretized equations (equation (19)). Details concerning the 
derivation of this equation for a collocated arrangement of variables can be found in Peri6l7 here 
only a brief summary will be given. 

For the calculation of the mass fluxes through the CV faces and for checking mass conserva- 
tion, the values of the velocity components at the CV face centres are needed. In order to avoid 
oscillations which may result if a simple linear interpolation is used for this purpose, a special 
interpolation practice is employed, as suggested by Prakash,*j HsuZ4 and Rhie.” The basis for 
this interpolation are the discretized momentum equations at the CV centres on either side of the 
face in question, which may be rewritten as follows: 

Here the pressure difference in the w+ direction has been taken out of the Q-term and shown 
explicitly. The superscript asterisk denotes values employed in and resulting from the momentum 
equations. To evaluate u;, terms on the right-hand side of equation (20) are selectively inter- 
polated for or evaluated at the ‘e’ location; thus 

where the overbar denotes linear interpolation. The cell face velocities are thus made dependent 
on the pressures at the two neighbouring nodes, as is the case in the true staggered arrangement. 

From now on the SIMPLE strategy can be used in its standard form, developed for the 
staggered arrangement of velocities and pressure. The mass imbalance, which results when the 
cell face velocity components u:, calculated from expressions like (22), are introduced in the 
continuity equation (see equation (1 b)), 

is to be annihilated by the mass flux corrections F’. These are based on the velocity corrections u’, 
which are further related to the pressure corrections P‘ by, e.g. at the ‘e’ face, 

u; = Ze(.Pk - PL). 

Fk + F L  + Fk + F :  + S, = 0, 

(24) 

(25) 

The continuity equation then reads 

which eventually leads to an equation for the pressure correction which has the same form as 
equation (19). Note that, for example, F, for the cell centred around node P is equal to - F, of the 
cell centred around node W. 

The extension of the pressure correction approach for the collocated arrangement of variables 
to the P IS0  algorithm of as weii as to other related coupling algorithms such as 
SIMPLER” or SIMPLEC,27 is also straightforward, as described by Perik.I7 It should also be 
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noted that the underrelaxation factors for the velocity components, inherent in equation (21), 
affect the values of the cell face velocities when the pressure variation is non-linear. A study of this 
effect and a possibility for its suppression are presented by Majumdar.28 

Solution algorithm 

boundaries can be summarized as follows. 
The solution algorithm for the calculation of unsteady flows in irregular domains with moving 

1. Provide the initial grid and values of the dependent variables (solution for time to) ;  
2. Determine the location of the boundary grid points after the time has advanced by 6t  and 

move the old grid to fit the new boundaries. It is assumed here that the law which governs 
the motion of the solution domain boundary is known, either as a function of time alone 
(externally induced boundary motion, e.g. in a piston/cylinder assembly) or as a function of 
the previous flow development (internally induced boundary motion, e.g. in free surface 
flows). The number of control volumes is thereby kept constant. 

3. Assemble and solve the equations for the velocity components, employing the currently 
available pressure and masspuxes. One pass in the SIP solver is often sufficient. 

4. Calculate the new mass fluxes using the new velocity components and determine the mass 
imbalance in each CV. 

5. Assemble and solve the pressure correction equation. Apply SIP until the sum of the 
absolute residuals is reduced by a factor of four to five. 

6. Correct the mass fluxes, nodal velocity components and pressure by the calculated pressure 
correction. 

7. Assemble and solve any other scalar equation which may be coupled with the momentum 
equations (e.g. temperature, turbulent kinetice energy and its dissipation rate, etc.) and 
update the fluid properties (density, viscosity) if necessary. 

8. Return to step 3 and repeat until the sum of the absolute residuals in the momentum and 
continuity equations has fallen by two to three orders of magnitude. 

9. Advance the time by another increment 6t and returen to step 2; repeat until the prescribed 
number of time steps is completed. 

The number of iterations per time step (steps 3-7) depends on the size of the time increment 6 t ;  for 
smaller 6t  fewer iterations are needed to reach the solution at the new time level. The number of 
iterations and the computing time can be reduced considerably by employing multigrid coupling, 
as done for orthogonal grids by Barcus et Becker et d3’ and Durst et aL31 

APPLICATION OF THE METHOD 

The present method is an extension of the method developed for steady flows by PeriE.17 He has 
demonstrated the suitability of the method for the prediction of flows in complex geometries by 
applying it to a number of test cases in both two and three dimensions. The relative merits of 
staggered and collocated variable arrangements are studied on several flows in rectangular 
geometries by PeriC et aL3’ The role of the space conservation law in numerical calculations with 
moving grids has previously been studied by DemirdiiE and PeriC.l3. For the sake of demonstrat- 
ing the ability of the present method to predict the flow in complex geometries with moving 
boundaries, we have performed calculations for the flow in a channel with a moving indentation, 
which has been studied experimentally by Pedley and S t e p h a n ~ f f ~ ~  and numerically by Ralph 
and Pedley. 
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Description of problem 

The geometry of the flow domain is shown in Figure 3. The shape of the indentation is taken 
from Pedley and S t e p h a n ~ f f , ~ ~  who specified analytic functions which approximately fit the real 
shape used in the experiment. The height of the bottom (indented) wall is given by 

for 0 < x < x l ,  
y ( x )  = 0.5h{l - tanh [a(x - x,)]} for x1 < x < x3, (26) 1: for x > x3, 

where a = 4.14, x1 = 4b, x3 = 6 5 b ,  x2 = 0.5(x, + x3) and 

h = 0.5hm,,[1 - C O S ( ~ X ~ * ) ] ,  t* = ( t  - t o ) / T  (27) 

Here b is the channel height, T is the oscillation period and h,,, = 0.38b specifies the maximum 
blockage of the channel cross-section at t* = 0 5 .  The geometry is symmetric around x = 0, 
i.e. y(  - x) = y(x). The Strouhal number, based on the channel height b, bulk velocity U 
and oscillation period T, 

St = b /UT,  (28) 

was 0.037. The Reynolds number, based on the above reference quantities, was 507. 
At t = to (initial state) the flow is assumed to be fully developed. The velocity profile at the inlet 

cross-section is taken to remain constant throughout the cycle, which is approximately in 
accordance with experiment. At the other channel end, zero gradient in the x-direction for both 
velocity components is taken as the boundary condition. The effect of this4efinitely not 
perfect-boundary condition on the solution was not studied; it can be anticipated that in the 
second half of the period the region near the exit may be affected. This could have been checked 
by placing the outlet boundary at various locations downstream of the indentation, as done by 
Ralph and Pedley." However, since the experiments offer no quantitative data for detailed 
validation of the numerical solution, no effort in this direction has been made here. All time step 
and grid size dependence tests were carried out with the same boundary conditions. 

Grid dependence tests 

Calculations were performed on two numerical grids covering the region shown in Figure 3: 
one coarse with a 91 x 20 CV, and one refined with a 221 x 40 CV. One section of the fine grid at 

Figure 3. Geometry of the test case (not to scale): b = 1 cm, I, = 9.85 cm, I ,  = 18.0 cm 
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t* = 0 and t* = 0.5 is shown in Figure 4 (to scale). In the region around the indentation ends the 
grid is non-orthogonal and non-uniform; in the rest of the solution domain it is orthogonal and 
uniform but not square. Pure central differences are used in both cases for the discretization of the 
convection fluxes (y = 1 in equation (14)). Two time increments were used for the coarse grid 
calculations: 6t = T/50 and 6t = T’200. Fine grid calculations were carried out only with the 
smaller time increment. Typically 40 iterations per time step were performed and the computing 
time per iteration was about 1.6 s on a Cyber 205 computer. 

Figure 5 shows a comparison of the wall shear stresses calculated on the coarse grid with two 
different time steps at t* = 0.5. Differences between the two solutions exist only in the region 
downstream of the indentation. The magnitudes of the peaks are higher for smaller 6t, but no 
significant changes in the position of separation and reattachment can be observed. This indicates 

a 

b 

Figure 4. Section of the fine grid (221 x 40 CV) at (a) t* = 0 and (b) t* = 0.5 

~ 

6t= T1200 

6t = T150 _ _ _ - - -  
c I 

15 
lo x (cm) 

10 0 5 

Figure 5. Comparison of predicted wall shear stresses at t* = 0.5 using the coarse (91 x 20 CV) grid and various time 
steps 
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221 x 40 cv 
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-10 -5 0 5 10 15 
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Figure 6. Comparison of predicted wall shear stresses on two grids at (a) t* = 0.5 and (b) t* = 0.7 using time step 
6t = TI200 

that the temporal discretization errors are smaller than the spatial ones. This is demonstrated in 
Figures 6(a) and 6(b), where comparisons between fine and coarse grid results at t*=0.5 and 
t* = 0.7 respectively (both obtained with 6t  == T/200) are presented. Significant differences 
exist, especially for t* > 0.5. These comparisons show that the finer grid is still not fine 
enough to provide grid-independent results. The smaller of the two time steps can be con- 
sidered adequate for the spatial resolution of the grid employed. Although for numerically 
accurate results further grid refinement is necessary, for the sake of qualitative comparison 
with the flow visualization results of Pediey and S t e p h a n ~ f f ~ ~  the numerical accuracy achieved 
on the 221 x 40 CV and 6t = TI200 suffices. 
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Results of calculations 

Figures 7(ak7(i) show predicted velocity vectors, isobars and streamlines at t* = 02, 0.3, 0.4, 
0*5,06,07,0-8,0-9 and 1.0 respectively. Only the section behind the indentation is shown since 
the flow upstream of it is not much affected by its movement. In this region an undisturbed fully 
developed flow regime prevails. Owing to the displacement of fluid by the moving indentation, the 
flow rate behind it is higher than the (constant) inlet rate for t* < 0.5. The maximum velocity 
occurs at t* = 0.4, exceeding the maximum velocity of the fully developed flow by 76% (2.645 
versus 1.5). For t* > 0-5 the oncoming fluid fills the gap left by the retracting indentation, so that 
the outgoing flow rate reduces below the incoming one. The maximum velocity becomes closer to 
that of the fully developed flow as the end of the period is approached. The first separation occurs 
behind the indentation between t* = 0.2 and 0.25. Between t* = 035 and 0.4 another vortex 
appears at the opposite wall, shifted about one channel height downstream. At about t* = 0.45 
the third vortex appears behind the first one. The vortices continue building up alternately at the 
upper and lower wall until there are four of them at each wall. They move with the flow, the 
downstream ones somewhat faster; at the same time they grow stronger, but after t* z 0.7 they 
begin to weaken, dying out completely after t* = 0-9, so that at t* = 1-0 only slightly wavy 
streamlines remain. The pressure also recovers very quickly from a very complex structure at 
t* = 0.8 to a nearly uniform distribution at the cycle end. 

Figures 8(a) and 8(b) show the variation of the wall shear stress on the lower (indented) and 
upper wall respectively during the cycle. They indicate the strength of the eddies, the positions of 
separation and reattachment (change of sign in wall shear stress) and thus the movement of eddies 
along the wall. The first four eddies, marked A, B, C and D in Figure 7(e), are the strongest; eddies 
E and F are relatively weak. The last two eddies might have been weakened by the simple outflow 
boundary condition employed in the calculations. However, experiments and recent calculations 
of Ralph and Pedley' also indicate weaker eddies in this region. Eddy A is strongest at t* = 0-5 
(maximum shear stress occurs then); peaks in other eddies occur 0.05 T later, in the order of their 
appearance. The shear stress variation along the indentation and the opposite wall also indicates 
an acceleration of the flow in this region when the indentation is moving inwards (t* < 05; 
dr/dx to) and a deceleration when it is retracting (t* >0.5; dt/dx >O). The steadiness of the flow 
in front of the indentation is also evident from Figure 8. 

Discussion 

The flow structure observed in our prediction on a 221 x 40 CV grid is qualitatively in good 
agreement with both the experimental study of Pedley and Stephanoff 33 and the recent numerical 
results of Ralph and Pedley.' The solution procedure used by Ralph and Pedley" was a finite 
difference method in a streamfunction-vorticity formulation, specially modified for this case. (The 
co-ordinate transformation which they used in this adaptation can be applied only for mildly 
curved and moderately steep indentations; it will become singular in the case of a step-like 
indentation.) They used uniform square grids, except in the region of indentation where the grid 
was square only in the transformed space. Their finest grid had about seven times as many nodes 
in the x-direction as the one used in this study. Since they used an explicit scheme, for stability 
reasons they had to use very small time increments, 6t = T/6000. It should be noted that their 
finite difference procedure takes no account of the space conservation law. However, owing to the 
very small time step size employed, the space conservation errors are most probably negligible 
according to the analysis of DemirdiiC and Perk1  

Although the grid employed here was significantly coarser and the time step 30 times longer 
than in the above referenced study, the qualitative agreement of the two predictions is good. All 
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b: T*= 0 . 3  

- =  2.645 M/S 

C: T'= 0 4 

Figure 7 (ax )  
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d: T’= 0 . 5  

1.987 M/S - =  
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A C e: T*= 0 . 6  

- =  1,727 M/S 

f :  T*= 0 . 7  

Figure 7. (d-f) 
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- =  1.564 M/S 

9 :  T*= 0 8 

1 5 0 3  M/S - _  

h :  T f =  0.9 
- =  1 511 M/S 

i: T*= 1 . 0  

Figure 7. Predicted velocity vectors, isobars and streamlines downstream of indentation at various times t*: (a) 0.2; 
(b) 0.3; (c) 0.4; (d) 0.5; (e) 0.6; (f) 0.7; (8) 0.8; (h) 0.9; (i) 1.0 
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Figure 8. Predicted wall shear stress variation during one cycle: (a) indented wall (T& (b) opposite wall (zN) 

the important flow phenomena reported in the above cited studies have been observed in the 
present prediction too. The most remarkable effect is the break-up of eddy B; see Figures 7(d)-7(f). 
This phenomenon is discussed in detail by Ralph and Pedley.' Figure 9 shows the only possible 
quantitative comparison of experiment and prediction. The positions of wave crests and troughs 
corresponding to eddies B, C and D have been evaluated from the flow visualization photographs 
and presented by Pedley and S t e p h a n ~ f f . ~ ~  The same information evaluated from the predicted 
streamline plots is compared with the experimentally observed values in Figure 9. The positions 
of the horizontal tangent to the upper and lower of the five core streamlines (see Figures 7(d)-7(i)) 
are read visually from the streamline plots, the process being assisted by the resolution of the laser 
printer (300 dots per inch), which shows at those places a small portion of streamline as a straight 
horizontal line. The values obtained for the two streamlines determine the borders of the shaded 
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2 2 1 ~  40 CV, 6t=T/200 

Experiment, Ref. 3 
0. L 
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x *  

Q)/ 0 ,y 
0 1  2 3 4 5  

Figure 9. Comparison of predicted and experimentally observed positions of wave crests and troughs correponding to 
eddies B. C and D as functions of time 

area in Figure 9. According to Pedley and S t e p h a n ~ f f , ~ ~  the abscissa is defined as 

X* = (X - x1) ( 1 0 S t ) l / ~ / b .  (29) 

One can see from this figure that the wave length is correctly predicted, the prediction lines being 
always to the left of the experimental data. The effect of grid refinement is also obvious: find grid 
results are always closer to the experimental data. However, in order to obtain grid-independent 
results, further refinement, both spatial and temporal, is necessary. This has not been pursued 
here owing to the lack of computational resources and more detailed, quantitative experimental 
data. 

CONCLUSIONS 

In this paper a finite volume method for the prediction of fluid flow in arbitrarily shaped domains 
with moving boundaries is presented. The method is both Lagrangian and Eulerians since the 
numerical mesh may move with the fluid (Lagrangian approach), be held fixed (Eulerian 
approach) or be moved in any other prescribed way. Fully implicit temporal and central 
differencing spatial discretization are employed. The method is fully conservative, since the strong 
conservation form of the governing equations (with Cartesian velocity components) is used and 
the space conservation law is acccounted for in the discretization process. 

The advantages of the present method over explicit finite difference methods, as used e.g. by 
Ralph and Pedley," are the following: 

(1) use of non-orthogonal boundary-fitted grids, which makes the treatment of complex 
boundaries (e.g. with discontinuities) relatively easy 

(2) use of a collocated variable arrangement, which makes the extension to three dimensions 
and the employment of multigrid methods less complicated than when the staggered 
arrangement is used 
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(3) fully conservative discretization 
(4) no restriction to the time step size as in explicit methods, which allows efficient calculation 

of flows requiring finer spatial than temporal discretization (e.g. flows approaching steady 
state). 

Comparisons of predictions for a flow in a channel with moving indentation with experimental 
observations and another numerical study with much finer spatial and temporal resolution are 
favourable. 

Further development of the method includes implementation of the multigrid coupling 
procedure in order to reduce the computing effort per time step, as reported by Durst et aL3’ in 
applications to orthogonal grids. 
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